Section 4.1
 Linearization and Differentials

- Linearization
- Differentials
- Approximation and Relative Error

Given a function $y=f(x)$, the tangent line at $x=a$ is the line that just "touches" the curve at the point $(a, f(a))$, with slope $m=f^{\prime}(a)$.
We can think of the tangent line equation itself as a function of x :

$$
L_{a}(x)=f(a)+f^{\prime}(a)(x-a)
$$

Linear Approximation

For x-values near a, the tangent line L_{a} can be used to approximate the function $f(x)$. That is, if $|b-a|$ is small, then

$$
f(b) \approx L_{a}(b)=f(a)+f^{\prime}(a)(b-a)
$$

Linear Approximation

Often, it is easier to calculate $L_{a}(b)$ than $f(b)$.
Example 1: Approximate $\sqrt{3.98}$.

The linear approximation of $f(x)=\sqrt{x}$ at $x=4$ gives approximations for x-values near $x=4$. The farther x is from 4, the worse the approximation.

$$
y=2+\frac{1}{4}(x-4)
$$

$1 \lll \ggg \rightarrow+14 \rightarrow$

x	Δx	$L_{4}(x)$	\sqrt{x}	Percentage error
3	-1	1.7500	$1.7321 \ldots$	0.1%
3.9	-0.1	1.975	$1.9748 \ldots$	0.008%
4	0	2.000	$2.0000 \ldots$	0%
4.1	0.1	2.025	$2.0248 \ldots$	0.008%
5	1	2.250	$2.2360 \ldots$	0.62%
9	5	3.250	$3.0000 \ldots$	8.33%

Linear Approximation Vs. Polynomial Approximation

Values of $f(x)=\sin (x)$ near $x=0$ can be approximated through linearization.

$$
f(0)=\sin (0)=0 \quad f^{\prime}(0)=\cos (0)=1
$$

So $\sin (x) \approx 0+1(x-0)=x$ for x-values near zero.
When approximating with tangent lines, the value used for approximation must be very close to $x=a$. For example, $\sin (6) \approx 6$ is a bad approximation.

Taylor Polynomials: Linearization can be generalized to higher degree polynomials, which typically have better approximations for values a large distance from $x=a$.

Best line approx.
at $x=0$ (Calc. 1)

Best $5^{\text {th }}$ deg. polynomial approx.

Increments and Differentials

We can finally say what $d y$ and $d x$ mean!

- In this figure, the value of x changes from a by Δx to $a+\Delta x$.
- The resulting change in $y=f(x)$ is $\Delta y=\Delta f=f(a+\Delta x)-f(a)$.
- The differentials $d x$ and $d y$ are the changes in the x - and y-coordinates of the tangent line:

$$
d x=\Delta x \quad d y=f^{\prime}(a) d x
$$

Error Estimation

Sometimes, we can only measure the value of x to within some error Δx. In that case, how accurate is the value of $f(x)$?

The maximum possible error in $f(x)$ is

$$
\Delta f=\Delta y=f(a+\Delta x)-f(a)
$$

which we can approximate by the differential $d f$:

$$
d f=d y=f^{\prime}(a) \Delta x=f^{\prime}(a) d x
$$

Linear Approximation Error

If the value of the x is measured as $x=a$ with an error of $\pm \Delta x$, then Δf, the error in estimating $f(x)$, can be approximated as

$$
\Delta f=f(x)-f(a) \approx f^{\prime}(a) \Delta x=d f
$$

Example 2: Standing 100 meters from a building, you estimate that your angle of inclination to the top of the building is $\theta=60^{\circ}$, with a possible error of 3°. How tall is the building? How accurate is your estimate?

Error Estimation: Example

Example 3: A gaming company produces cubical dice. For shipping purposes, each die must have volume $80 \mathrm{~cm}^{3}$, with a tolerance of $\pm 2 \mathrm{~cm}^{3}$. How long should each side be and how much variation can be allowed?

Percentage Error

Suppose that we measure some quantity as $x=a \pm \Delta x$ and then want to calculate $f(x)$. We often want to know how large the error Δf is relative to the actual value of $f(a)$.
That is, we want to look at the percentage error:

$$
\text { Relative error }=\left|\frac{\text { error of } f}{\text { value of } f}\right|=\left|\frac{\Delta f}{f(a)}\right|
$$

As before, we can use differentials to approximate percentage error:

$$
\text { Relative error }=\left|\frac{\Delta f}{f(a)}\right| \approx\left|\frac{d f}{f(a)}\right|=\left|\frac{f^{\prime}(a) \Delta x}{f(a)}\right| .
$$

(In order to convert this ratio to a percentage, multiply by 100%.)
Revisiting Example 2: Standing 100 meters from a building, you estimate that your angle of inclination to the top of the building is $\theta=60^{\circ}$, with a possible error of 3°. What is the potential percentage error?

Percentage Error, Example (Optional)

Example 4: Using a ruler marked in millimeters, you measure the diameter of a circle as 6.4 cm . How large can the error in the calculated area of the circle be? What is the potential percentage error?

Alternative Solution:

Now notice that, if I am using the measurement in radius, then the measured value is $r=3.2$ and with the possible error: $\frac{0.1}{2}=0.05 \mathrm{~mm}$.
That is, the measurement is $3.2-0.05<r<3.2+0.05$.
Relate the area of circle with radius:

$$
A(r)=\pi r^{2} \quad A^{\prime}(r)=2 \pi r \quad A(3.2) \approx 32.17 \mathrm{~cm}^{2}
$$

Now

$$
\Delta A \approx|d A|=\left|A^{\prime}(3.2)\right| \cdot|\Delta x|<(6.4 \pi)(| \pm 0.05|) \approx 1.01 \mathrm{~cm}^{2}
$$

Therefore the percentage error is

$$
\frac{1.01 \mathrm{~cm}^{2}}{32.17 \mathrm{~cm}^{2}}=0.0314=3.14 \% \text { of the measured area. }
$$

The Effect of Concavity

The accuracy of an approximation using a tangent line is affected by the concavity of the curve. At a point (a,f(a)),

concave up	\Leftrightarrow	$f^{\prime \prime}(a)>0$	\Leftrightarrow	graph lies above tangent line	\Leftrightarrow	e
concave down	\Leftrightarrow	$f^{\prime \prime}(a)<0$	\Leftrightarrow	graph lies below tangent line	\Leftrightarrow	overestimate

The greater the absolute value of $f^{\prime \prime}(a)$, the more the graph diverges from the tangent line.

The Effect of Concavity, Example (Optional)

Example 5: Use a suitable linear approximation to estimate $\ln (1.1)$. Is your estimate greater than, less than, or equal to the actual value?

