Section 4.1 Linearization and Differentials

- Linearization
- Differentials
- Approximation and Relative Error

Given a function y = f(x), the tangent line at x = a is the line that just "touches" the curve at the point (a, f(a)), with slope m = f'(a).

We can think of the tangent line equation itself as a function of x:

$$L_a(x) = f(a) + f'(a)(x - a)$$

Linear Approximation

For x-values near a, the tangent line L_a can be used to approximate the function f(x). That is, if |b-a| is small, then

$$f(b) \approx L_a(b) = f(a) + f'(a)(b-a)$$

KUKANSAS

Linear Approximation

Often, it is easier to calculate $L_a(b)$ than f(b).

Example 1: Approximate $\sqrt{3.98}$.

The linear approximation of $f(x) = \sqrt{x}$ at x = 4 gives approximations for x-values near x = 4. The farther x is from 4, the worse the approximation.

X	Δx	$L_4(x)$	\sqrt{X}	Percentage error
3	-1	1.7500	1.7321	0.1%
3.9	-0.1	1.975	1.9748	0.008%
4	0	2.000	2.0000	0%
4.1	0.1	2.025	2.0248	0.008%
5	1	2.250	2.2360	0.62%
9	5	3.250	3.0000	8.33%

Linear Approximation Vs. Polynomial Approximation

Values of f(x) = sin(x) near x = 0 can be approximated through linearization.

 $f(0) = \sin(0) = 0 \qquad f'(0) = \cos(0) = 1$

So $sin(x) \approx 0 + 1(x - 0) = x$ for x-values near zero.

When approximating with tangent lines, the value used for approximation must be **very** close to x = a. For example, $sin(6) \approx 6$ is a bad approximation.

Taylor Polynomials: Linearization can be generalized to higher degree polynomials, which typically have better approximations for values a large distance from x = a.

Increments and Differentials

We can finally say what dy and dx mean!

- In this figure, the value of x changes from a by Δx to $a + \Delta x$.
- The resulting change in y = f(x) is $\Delta y = \Delta f = f(a + \Delta x) f(a)$.
- The **differentials** *dx* and *dy* are the changes in the *x* and *y*-coordinates of the tangent line:

$$dx = \Delta x$$
 $dy = f'(a) dx$

Error Estimation

Sometimes, we can only measure the value of x to within some error Δx . In that case, how accurate is the value of f(x)?

The maximum possible error in f(x) is

$$\Delta f = \Delta y = f(a + \Delta x) - f(a)$$

which we can approximate by the differential df:

$$df = dy = f'(a)\Delta x = f'(a) \, dx.$$

Linear Approximation Error

If the value of the x is measured as x = a with an error of $\pm \Delta x$, then Δf , the error in estimating f(x), can be approximated as

 $\Delta f = f(x) - f(a) \approx f'(a)\Delta x = df.$

Example 2: Standing 100 meters from a building, you estimate that your angle of inclination to the top of the building is $\theta = 60^{\circ}$, with a possible error of 3°. How tall is the building? How accurate is your estimate?

by Joseph Phillip Brennan Jila Niknejad

Error Estimation: Example

Example 3: A gaming company produces cubical dice. For shipping purposes, each die must have volume 80 cm^3 , with a tolerance of $\pm 2 \text{ cm}^3$. How long should each side be and how much variation can be allowed?

Percentage Error

Suppose that we measure some quantity as $x = a \pm \Delta x$ and then want to calculate f(x). We often want to know how large the error Δf is relative to the actual value of f(a).

That is, we want to look at the percentage error:

Relative error
$$= \left| \frac{\text{error of } f}{\text{value of } f} \right| = \left| \frac{\Delta f}{f(a)} \right|$$

As before, we can use differentials to approximate percentage error:

Relative error
$$= \left| \frac{\Delta f}{f(a)} \right| \approx \left| \frac{df}{f(a)} \right| = \left| \frac{f'(a) \Delta x}{f(a)} \right|.$$

(In order to convert this ratio to a percentage, multiply by 100%.)

Revisiting Example 2: Standing 100 meters from a building, you estimate that your angle of inclination to the top of the building is $\theta = 60^{\circ}$, with a possible error of 3°. What is the potential percentage error?

Percentage Error, Example (Optional)

Example 4: Using a ruler marked in millimeters, you measure the diameter of a circle as 6.4 cm. How large can the error in the calculated area of the circle be? What is the potential percentage error?

Alternative Solution:

Now notice that, if I am using the measurement in radius, then the measured value is r = 3.2 and with the possible error: $\frac{0.1}{2} = 0.05$ mm. That is, the measurement is 3.2 - 0.05 < r < 3.2 + 0.05.

Relate the area of circle with radius:

$$A(r) = \pi r^2$$
 $A'(r) = 2\pi r$ $A(3.2) \approx 32.17 \text{ cm}^2$

Now

$$\Delta A \approx |dA| = |A'(3.2)| |\Delta x| < (6.4\pi)(|\pm 0.05|) \approx 1.01 \,\mathrm{cm}^2$$

Therefore the percentage error is

$$\frac{1.01\,\text{cm}^2}{32.17\,\text{cm}^2}$$
 = 0.0314 = 3.14% of the measured area

The Effect of Concavity

The accuracy of an approximation using a tangent line is affected by the concavity of the curve. At a point (a, f(a)),

The greater the absolute value of f''(a), the more the graph diverges from the tangent line.

The Effect of Concavity, Example (Optional)

Example 5: Use a suitable linear approximation to estimate ln(1.1). Is your estimate greater than, less than, or equal to the actual value?

